北京理工大学研究生课程教学日历

课程名称_	量子信息物理	里原理进展	
课程代码_	1800003	课程性质 <u>必修</u>	
主讲教师_	<u>刘玉龙</u> 20 <u>17</u> -	一20 <u>18</u> 学年第 <u>1</u> 学期]
辅导教师_			記

	时数	全总		每			
-	教学计划	学时期数	讲授	实验	习题	考核	周时数
	教学计划	32	32			3	3
	实际上课	29	29			3	3

授课对象_____博士研究生______

周	上课	时数		课外阅读和书面的作业		学习检查		参考书名
次	方式		授课内容	时数	内容	检查方式	所需时间	和章节
4	讲授	3	量子信息的历史和 现状			课堂提 问		[1]-[7]
5	讲授	3	数学基础			课堂提 问		[1] 2.1
6	放假							
7	讲授	3	量子力学基本假设			课堂提问		[1] 2.2-2.3
8	讲授	3	密度算符,量子操 作,距离度量			课堂提		[1] 2.4, 8, 9
9	讲授	3	熵和信息			课堂提		[1] 11
10	讲授	3	熵和信息			课堂提		[1] 11
11	讲授	3	熵和信息,量子信 息理论			课堂提问		[1] 11,12
12	讲授	3	量子信息理论			课堂提问		[1] 12
13	讲授	3	量子信息理论			课堂提问		[1] 12
14	考核	2				课堂提 问		

一、 教学目的

通过本课程的学习,使研究生:

- 1、了解量子信息理论的历史和现状;
- 2、掌握量子信息理论的基本概念、基本原理、基本方法以及在其它领域内的应用;
- 3、了解量子信息理论的一些近期研究进展。

二、授课方法和方式

课堂讲授和讨论。

三、 成绩评定方式

本课程设计了三个项目,每个项目由一定难度的阅读材料构成。学生分成三组,每一组选一个主题,学生需要合作把阅读材料理解透彻,并把阅读材料做成 PPT 在 14 周进行考核汇报,每个报告 20-30 分钟,成绩评定由报告情况和回答问题情况决定。

四、 教材和必读参考资料

- 1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2000.
- 2. M. M. Wilde, Quantum Information Theory, Second Edition, Cambridge University Press, 2016.
- 3. G. Aubrun and S. Szarek, Alice and Bob Meet Banach The Interface of Asymptotic Geometric Analysis and Quantum Information Theory, American Mathematical Society, 2017.
- 4. S. Lloyd, Quantum Information Science, MIT, 2008.
- 5. IEEE Transactions on Information Theory, Special issue on 50 years of information Theory, Vol. 44, No. 6, 1998.
- 6. C. E. Shannon, A Mathematical Theory of Communication, 1948.
- 7. T. Cover and J. A. Thomas, Elements of Information Theory, Second Edition, Wiley, 2006.

任课教师		_年_	月	_日
教学院长		_年_	月	日

注:

- 1. 此教学日历由授课教师填写,教学院长签字后执行,学院留存一份。
- 2. 任课教师应将教学日历提供给上课的研究生,课程完成后填写实际上课的学时数。