北京理工大学研究生课程教学日历

课程名称 现代光谱分析 课程代码 1900030 课程性质 选修 主讲教师 张小玲 2017 — 2018 学年第 1 学期

Ī	时数	全总		每			
-	教学计划	学时 期数	讲授	实验	习题	考核	周时数
Į	教学计划	32	26		6	2	4
	实际上课	34	26		6	2	4

授课对象 硕士、博士研究生

周	上课	时				_	课外阅读和书面的作业			学之	参考书名	
次	方式	数	授	课	内	容	时数	内	容	检查方式	所需时间	和章节
14	讲授	4	概述 1.1 课程 1.2			音分析 ^全 论	5	专题研究 践(Proble learning,	em based	研究报 告撰写 与 ppt 陈述	1	现代仪器分析 /Princip les of Fluores cence Spectro scopy
5	讲授	4	光谱· 2.1 2.2 2.3	光源 分光	(:系统	泛系统	5	专题研究 践(Proble learning,	em based	研究报 告撰写 与 ppt 陈述	1	现代仪器分析 /Princip les of Fluores cence Spectro scopy
6	放假						8	专题研究 践(Proble learning,	em based	研究报 告撰写 与 ppt 陈述	1	现代仪 器分析 /Princip les of Fluores cence Spectro scopy

7	讲授	4	原子光谱 3.1 原子吸收光谱 (AAS) 3.2 原子发射光谱 (AES) 3.3 X 射线荧光光谱 (XFS) 3.4 穆斯堡谱	5	专题研究学习实践(Problem based learning, PBL)	研究报 告撰写 与 ppt 陈述	1	现代仪 器分析 /Princip les of Fluores cence Spectro scopy
8	讲授	4	分子发光分析 4.1基本原理 4.2 荧光分析方法	5	专题研究学习实 践(Problem based learning, PBL)	研究报 告撰写 与 ppt 陈述	1	现代仪器分析 /Princip les of Fluores cence Spectro scopy
9	讲授	4	4.3 荧光发光分子 4.4 荧光寿命测定 4.5 能量转移及猝灭 4.6 荧光各向异性 4.7 蛋白质荧光	5	专题研究学习实 践(Problem based learning, PBL)	研究报 告撰写 与 ppt 陈述	3	现代仪器分析 /Princip les of Fluores cence Spectro scopy
10	讲授	4	4.8 荧光传感 4.9 多光子激发 5 现代显微成像技术方法及生物分析 技术前沿	5	专题研究学习实 践(Problem based learning, PBL)	研究报 告撰写 与 ppt 陈述	3	现代仪 器分析 /Princip les of Fluores cence Spectro scopy
11	讲授	4	5 现代显微成像技术方法及生物分析技术前沿6 专题研究学习实践研究报告陈述7考核	5	1、专题研究学习 实践(Problem based learning, PBL) 2、光谱分析基本 原理、基础知识	1、报写 ppt	4	现代仪 器分析 /Princip les of Fluores cence Spectro scopy

一、教学目的

通过本课程学习,使学生了解和掌握:

- 1、 光谱学基础
- 2、 光谱分析最新进展

- 3、 现代显微成像技术方法
- 4、 生物分析及技术前沿

并通过专题研究学习实践(Problem based learning, PBL)培养学生:

- 1、 获取知识信息的能力
- 2、 批评综述能力
- 3、 批判创新性思维能力
- 5、 陈述表达能力;
- 5、 交流能力
- 6、组织能力

二、授课方法和方式

课堂讲授,材料自学,学生专题研究学习实践及研究报告撰写与陈述

三、成绩评定方式

成绩以百分制衡量。

成绩评定依据:平时成绩占10%,专题研究学习实践占40%,期末笔试成绩占50%。

四、教材和必读参考资料

教材:

Kenneth A.Rubinson, Judith F. Rubinson, 现代仪器分析(影印版), 科学出版社: 2003 必读参考资料:

- 1、 许金钩 王尊本等著, 荧光分析法 (第三版), 科学出版社: 2006
- 2. Joseph R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd Edition, Spinger: New York, 2006
- 3. Research papers in Science, Nature, JACs, Anal. chem., J. of Fluorescence, and other related academic journals.
- 4. J. R. Lakowicz ed. Topics in Fluorescence Spectroscopy, Volume 1: techniques, Plenum Press
- 5、朱若华等编,室温磷光分析法原理与应用,科学出版社:2006
- 6、吴世康编著,超分子光化学导论,科学出版社:2005
- 7、 J.W.Steed,J.L.Atwood 著,赵耀鹏等译,超分子化学,化学工业出版社:2006
- 8、 张华山等编, 分子探针与检测试剂, 科学出版社: 2002
- 9、 汪尔康主编, 生命分析化学, 科学出版社: 2006
- 10. Lakoweicz, JR., Principles of Fluorescence Spectroscopy, 2th, Plenum publishers, NY, 1999

任课教师_	张小玲	<u>2017</u> 年	<u>9</u> 月_2	2_日
教学院长		年	月	日

注:

- 1. 此教学日历由授课教师填写,教学院长签字后执行,学院留存一份。
- 2. 任课教师应将教学日历提供给上课的研究生,课程完成后填写实际上课的学时数。