北京理工大学研究生课程教学日历

课程名称	线性控制系统
课程代码	_0600004课程性质必修课
主讲教师	马宏宾 2017—2018 学年第 1 学期
辅导教师	

时数	全总		每			
教学计划	学时 期数	讲授	实验	习题	考核	周时数
教学计划	48	42	2	1	3	3

授课对象 研究生、本科生

周	上课	时数	授 课 内 容	课外间	阅读和书面的作业	学习检查		参考书名
次方式				时数	内容	检查方式	所需时间	和章节
1	课堂讲 授讨论	3	课程简介	3	例子、网站、LaTeX	作业+ 提问	1	自编第 1章
2	课堂讲 授讨论	3	线性性	3	线性映射、线性空 间、坐标变换	作业+ 提问	1	自编第 2章
3	课堂讲 授讨论	3	线性方程组	3	最小二乘、最小范 数	作业+ 提问	1	自编第 2章
4	课堂讲 授讨论	3	线性方程组	3	LU、QR、SVD 分 解	作业+ 提问	1	自编第 4章
5	课堂讲 授讨论	3	线性自治系统	3	概念、矩阵指数、 轨线求解、特性	作业+ 提问	1	自编第 4章
6	课堂讲 授讨论	3	线性自治系统	3	稳定性、时变系 统、线性化	作业+ 提问	1	自编第 4章
7	课堂讲 授讨论	3	线性控制系统	3	举例、能控性、线性反馈、极点配置	作业+ 提问	1	自编第 5章
8	课堂讲 授讨论	3	线性控制系统	3	能观性、观测器、 状态估计	作业+ 提问	1	自编第 5章
9	课堂讲 授讨论	3	线性控制系统	3	最优控制、最优估 计	作业+ 提问	1	自编第 5章
10	课堂讲 授讨论	3	不变性	3	不变集、不变子空 间、Sylvester 方程	作业+ 提问	1	自编第 6章
11	课堂讲 授讨论	3	稳定性	3	概念、线性二次李 氏函数	作业+ 提问	1	自编第 7章
12	课堂讲 授讨论	3	稳定性	3	一般李氏函数、应 用举例	作业+ 提问	1	自编第 7章
13	课堂讲 授讨论	3	系统实现	3	等价系统、最小实 现、平衡实现	作业+ 提问	1	自编第 8章
14	课堂讲 授讨论	3	考前辅导	3		作业+ 提问	1	

教学目的

线性系统理论是自动化和控制相关专业的基础课,所涉及的基本概念和思想主要来源于线性系统的特殊 结构性质。在这门课程中,学生被鼓励以一种开放的心态,在简单且优雅的框架下,学习线性系统理论。

授课方法和方式

课堂讲授、迷你项目、论文分析、课堂讨论

成绩评定方式 三、

成绩以百分制衡量。

成绩评定依据:课堂表现有加分,课后作业和课堂出勤 20%,考试 70%。

四、 教材和必读参考资料

- [1] 马宏宾、夏元清、王美玲, 线性系统理论导引. 科学出版社. 2017
- [2] Thomas Kailath, Linear Systems. Prentice-Hall, New Jersey, 1980
- [3] Chi-Tsong Chen, Linear System Theory and Design. Oxford Univ. Press
 [4] Richard C. Dorf, Modern Control Systems. Addison-Wesley Publishing Company, 1967. [11th ed. 2007]
- [5] João P. Hespanha, Linear Systems Theory. Princeton University Press, 2009
- [6] Benmei Chen and Zongli Lin and Yacov Shamash, Linear System Theory: A Structural Decomposition Approach.
- [7] 郑大钟、线性系统理论. 清华大学出版社. 第2版, 2005
- [8] 郭雷(主编), 控制理论导论--从基本概念到研究前沿. 科学出版社. 2005

任课教师	年	三月_	日
教学院长	年	三月	日

注:

此教学日历由授课教师填写,教学院长签字后执行,学院留存一份。